Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Med (Lausanne) ; 10: 1125530, 2023.
Article in English | MEDLINE | ID: covidwho-20243521

ABSTRACT

Introduction: Chest computed tomography (CT) is suitable to assess morphological changes in the lungs. Chest CT scoring systems (CCTS) have been developed and use in order to quantify the severity of pulmonary involvement in COVID-19. CCTS has also been correlated with clinical outcomes. Here we wished to use a validated, relatively simple CTSS to assess chest CT patterns and to correlate CTSS with clinical outcomes in COVID-19. Patients and methods: Altogether 227 COVID-19 cases underwent chest CT scanning using a 128 multi-detector CT scanner (SOMATOM Go Top, Siemens Healthineers, Germany). Specific pathological features, such as ground-glass opacity (GGO), crazy-paving pattern, consolidation, fibrosis, subpleural lines, pleural effusion, lymphadenopathy and pulmonary embolism were evaluated. CTSS developed by Pan et al. (CTSS-Pan) was applied. CTSS and specific pathologies were correlated with demographic, clinical and laboratory data, A-DROP scores, as well as outcome measures. We compared CTSS-Pan to two other CT scoring systems. Results: The mean CTSS-Pan in the 227 COVID-19 patients was 14.6 ± 6.7. The need for ICU admission (p < 0.001) and death (p < 0.001) were significantly associated with higher CTSS. With respect to chest CT patterns, crazy-paving pattern was significantly associated with ICU admission. Subpleural lines exerted significant inverse associations with ICU admission and ventilation. Lymphadenopathy was associated with all three outcome parameters. Pulmonary embolism led to ICU admission. In the ROC analysis, CTSS>18.5 significantly predicted admission to ICU (p = 0.026) and CTSS>19.5 was the cutoff for increased mortality (p < 0.001). CTSS-Pan and the two other CTSS systems exerted similar performance. With respect to clinical outcomes, CTSS-Pan might have the best performance. Conclusion: CTSS may be suitable to assess severity and prognosis of COVID-19-associated pneumonia. CTSS and specific chest CT patterns may predict the need for ventilation, as well as mortality in COVID-19. This can help the physician to guide treatment strategies in COVID-19, as well as other pulmonary infections.

2.
Front Med (Lausanne) ; 9: 920016, 2022.
Article in English | MEDLINE | ID: covidwho-2043482

ABSTRACT

Introduction: Numerous clinical and laboratory scores that include C-reactive protein (CRP), D-dimer, ferritin, lactate dehydrogenase (LDH), interleukin 6 (IL-6), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine levels and oxygenation (PaO2 and SaO2) have been used for the prognosis of COVID-19. In addition, composite scores have been developed for the assessment of general state and risk in community-acquired pneumonia (CAP) that may be applied for COVID-19 as well. In this study, we assessed severity and potential prognostic risk factors for unfavorable outcome among hospitalized COVID-19 patients. We also applied the A-DROP general scoring system used in CAP to COVID-19. Patients and methods: Altogether 233 patients admitted to our center with COVID-19 were included in the study. Clinical status, several laboratory biomarkers described above, indicators of oxygenation were determined at hospital admission. We also applied the A-DROP composite scoring system that includes Age (≥ 70 years in males and ≥ 75 years in females), Dehydration (BUN ≥ 7.5 mmol/l), Respiratory failure (SaO2 ≤ 90% or PaO2 ≤ 60 mmHg), Orientation disturbance (confusion) and low blood Pressure (systolic BP ≤ 90 mmHg) to COVID-19. Results: At the time of admission, most patients had elevated CRP, LDH, ferritin, D-dimer, and IL-6 levels indicating multisystemic inflammatory syndrome (MIS). Altogether 49 patients (21.2%) required admission to ICU, 46 (19.7%) needed ventilation and 40 patients (17.2%) died. In the binary analysis, admission to ICU, the need for ventilation and death were all significantly associated with the duration of hospitalization, history of hypertension or obesity, confusion/dizziness, as well as higher absolute leukocyte and neutrophil and lower lymphocyte counts, elevated CRP, PCT, LDH, ferritin, IL-6, BUN, and creatinine levels, low PaO2 and SaO2 and higher A-DROP score at the time of admission (p < 0.05). Conclusion: Numerous laboratory biomarkers in addition to obesity, dizziness at the time of admission and the history of hypertension may predict the need for ICU admission and ventilation, as well as mortality in COVID-19. Moreover, A-DROP may be a suitable scoring system for the assessment of general health and disease outcome in COVID-19.

3.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1981190

ABSTRACT

Introduction Numerous clinical and laboratory scores that include C-reactive protein (CRP), D-dimer, ferritin, lactate dehydrogenase (LDH), interleukin 6 (IL-6), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine levels and oxygenation (PaO2 and SaO2) have been used for the prognosis of COVID-19. In addition, composite scores have been developed for the assessment of general state and risk in community-acquired pneumonia (CAP) that may be applied for COVID-19 as well. In this study, we assessed severity and potential prognostic risk factors for unfavorable outcome among hospitalized COVID-19 patients. We also applied the A-DROP general scoring system used in CAP to COVID-19. Patients and methods Altogether 233 patients admitted to our center with COVID-19 were included in the study. Clinical status, several laboratory biomarkers described above, indicators of oxygenation were determined at hospital admission. We also applied the A-DROP composite scoring system that includes Age (≥ 70 years in males and ≥ 75 years in females), Dehydration (BUN ≥ 7.5 mmol/l), Respiratory failure (SaO2 ≤ 90% or PaO2 ≤ 60 mmHg), Orientation disturbance (confusion) and low blood Pressure (systolic BP ≤ 90 mmHg) to COVID-19. Results At the time of admission, most patients had elevated CRP, LDH, ferritin, D-dimer, and IL-6 levels indicating multisystemic inflammatory syndrome (MIS). Altogether 49 patients (21.2%) required admission to ICU, 46 (19.7%) needed ventilation and 40 patients (17.2%) died. In the binary analysis, admission to ICU, the need for ventilation and death were all significantly associated with the duration of hospitalization, history of hypertension or obesity, confusion/dizziness, as well as higher absolute leukocyte and neutrophil and lower lymphocyte counts, elevated CRP, PCT, LDH, ferritin, IL-6, BUN, and creatinine levels, low PaO2 and SaO2 and higher A-DROP score at the time of admission (p < 0.05). Conclusion Numerous laboratory biomarkers in addition to obesity, dizziness at the time of admission and the history of hypertension may predict the need for ICU admission and ventilation, as well as mortality in COVID-19. Moreover, A-DROP may be a suitable scoring system for the assessment of general health and disease outcome in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL